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ABSTRACT

Nonparametric kernel estimators are mostly used in a variety of statistical research fields. Nadaraya-Watson kernel (NWK) estimator is 
one of the most important nonparametric kernel estimators that is often used in regression models with a fixed bandwidth. In this article, 
we consider the four new Proposed Adaptive NWK Regression Estimators (Interquartile Range [IQR], Standard Deviation [SD], Mean 
Absolute Devotion, and Median Absolute Deviation) rather than (Fixed Bandwidth, Adaptive Geometric, Adaptive Mean, Adaptive 
Range, and Adaptive Median). The outcomes in both simulation and actual data in leukemia cancer showed that the four new Aadaptive 
NWK Estimators (IQR, SD, Mean Absolute devotion, and Median Absolute Deviation) are more effective than the kernel estimations 
with fixed bandwidth in previous studies based Mean Square Error Criterion.

Keywords: Nonparametric regression, kernel regression, new aadaptive nadaraya-watson estimators, leukemia cancer, acute myeloid 
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INTRODUCTION

Nonparametric regression models aim to precisely 
determine the relationship between explanatory and 
response variables in various statistical situations; 

however, they are substantially less successful than parametric 
approaches when fitting a normal distribution. On the opposite 
side, nonparametric models are highly efficient in populations 
that do not fit normal distribution.[10] They may be used to a 
wide range of data types such as ordinal, nominal, ratio, and 
interval data.[17] Suppose the regression model for a given data 
points ( , )( )X Y Ri i i

n
� �1  is

	 Y f X ii i i� � � � � �� ; , , , ,1 2 3 � (1`)

Where ℇi is an observation error with zero mean variance 
σ2 and m is unknown regression function.

Smoothing is a significant aspect in the nonparametric 
regression process and is a technique for expressing the 
dependent variable’s pattern.[11] There have been four main 
factors for doing a nonparametric regression approaches for 
fitting data depending on.[17] First, to know the relationship 
between predictor and response variable. Second, to enable 
predictions of future findings without using a fixed parametric 
model. Third, by studying the results of individual locations, 
it offers a method for detecting spurious findings. Finally, 

working to solve the absent values by replacing or merging 
neighboring values of the independent variables X.[18]

Kernel Regression

Assume that x1, x2,…, xn from a random variable describe a 
sample of size (n) with density f(x).[1] bring the kernel density 
function of f(x) at point x:
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Kernel regression (Nadaraya-Watson Estimator) was 
established by Nadaraya in 1965 and Watson in 1964 which is 
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one of the most frequently used technique in nonparametric.[5,6,12] 
Both Nadaraya and Watson indicated the general estimator of 
( )ˆ  f x in nonparametric regression related to smoothing 

bandwidth (h) and kernel (k) in bellow formula.
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The smoothing or bandwidth parameter h is used to 
control the smoothness of the approximate graph, and the 
kernel weights as identified by
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The most important factor to consider in nonparametric 
regression is choosing bandwidth and kernel function. On the 
other hand, the selection of bandwidth is much more essential 
than the choice of kernel function on estimation.[8] The 
smoothed function can be expressed by scanning each data 
point with a weighted kernel function and then evaluating the 
input at each point. The kernel function is penalized based 
on its range from the centered location, and the degree of 
this penalty is defined by the bandwidth.[8] A narrow (small) 
bandwidth of h results in a wiggly curve and a wealth of noise 
in estimation, whereas a vast (big) bandwidth of h results in a 
flat curve and over-smoothed curves in estimation.

One of the assumptions of kernel density function is 
a symmetric that is often applied with a standard normal 
density.[13] The kernel’s functions of K can be used to one of 
several frequently used functions, namely Epanechnikov, 
Triangle, Quartic, Gaussian, Uniform, and Tricube 
(Triweight).[3] Gaussian is a common and practical Kernel 
Density Function[2] which is used in this paper as shown below.
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If you already have over one predictive variable, lengthy 
distributions, or multi modal distributions, Fixed Nadaraya 
Watson (FNW) is not always the best option.[9] In this situation, 
we can use the Variable Nadaraya-Watson Kernel (VNWK) 
estimator with a variable bandwidth i(xi) as seen below:
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[14] showed a formula to compute h(xi) in 1982,

	 h x h
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While f(xi) is determined by the kernel function estimator 
which is a probability density function of xi.

A new algorithm developed for the Abramson design 
estimator by Silverman in 1986, which he called an Aadaptive 
NWK (ANWK) function estimator. For a fixed h, the previous 
Kernel function estimator was used as a first stage,[4] which is 
represented by ( )ˆ

if x  and he established local h factor θi as:
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While G represents the geometric mean of ˆ )( if x  with 
G≠0 and a illustrates the sensitivity parameter between 0 
and 1  (0≤α≤1).[14] Selected the value of α=0.5 because its 
gives an accurate predictive results. Moreover then, Silverman 
provided an adaptive h as seen below:

	 h x hi Gi� � � � � (12)

In 2010,[15] it is introduced a change to the ANW approach 
that they have used arithmetic mean x  of ( )ˆ

if x  instead of 
using G for figuring out the h factor in NWK estimator.
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In 2014,[7] it modified the ANW approach that they have 
used range R of ( )ˆ

if x  instead of using G or x  for figuring out 
the h factor in NWK estimator.
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In 2019,[16] it proposed another change for the ANW 
approach that he used median instead of using geometric, 
mean, or range for calculating the h factor in NWK estimator.
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New Proposed NWK function estimator

In this study, a new changes for the Adaptive Nadaraya-
Watson approach was proposed, which used four different 
statistical techniques such as Interquartile Range (IQR), 
Standard Deviation (SD), Mean Absolute Deviation (MAD), 
and Median Absolute Deviation (MeAD) of ( )ˆ

if x  instead of 
using geometric mean, arithmetic mean, range, or median for 
figuring out the h factor in NWK estimator.
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Where IQR is an abbreviation for IQR, SD represents SD, 
MAD is an acronym for MAD, and MeAD stands for Median 
Absolute Deviation.

Mean Square Error (MSE)

In this paper, MSE is used as an estimation criterion to find 
out the difference between (classical) traditional and newly 
proposed NWK estimators. As mentioned below, the best 
estimator will be the one with lowest MSE value.
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MATERIALS AND METHODS

Leukemia cancer data are used to undertake the performance 
of all proposed methods such as ANW IRQ, ANW SD, ANW 
MAD, and ANW MeAD in real application which collected 
from January 2015 to December 2020 at Nanakali Hospital for 
Blood in Erbil City of Iraq.

Furthermore, the CD45 outcome as an explanatory 
variable and Platelet (PLT) as a response variable in AML 

type of Leukemia cancer from 30 patients in Table 1 is used 
to compare between proposed methods and classical methods.

Since simple regression cannot be met due to assumptions 
such as linearity and autocorrelation, nonparametric regression 
is used for both classical and proposed approaches based on 
MSE. Table 2 compares the findings of classical methods to a 
new proposed modification of the ANW kernel estimator for 
IQR, SD, MAD, and MeAD based on improving the prediction 
accuracy of the ANW kernel estimator. The proposed MeAD 
approach has the smallest MSE in various bandwidths and 
sample sizes, followed by MAD, SD, and IQR, respectively. 
We achieved the same results as in the simulation analysis, 
namely that all new proposed methods have smaller MSE than 
all classical methods.

Simulation Study

A simulation analysis was carried out to compare the efficiency 
between traditional Nadaraya-Watson and new proposed 
methods of ANW estimators using the R (4.0.2) language 
software. An explanatory variable and response variable with 
adding noise to an exponential wave are simulated in this non-
linear regression function to identify that proposed methods 
outperforms classical models.

	 y x x Ni i i i� � � � �exp ~ ( , )3 0 1� 	� (18)

Where xi was chosen at random from a uniform 
distribution on the interval [–2, 2] and generated different 
samples of size (25, 50, 75 and 150) with different fixed h 
(0.5, 0.75, 1, and 1.5). In this paper, comparison between 
classical methods such as FNW, VNW Geometric, ANW Mean, 
ANW Median, ANW Range with new proposed methods such 
as ANW IRQ, ANW SD, ANW MAD, and ANW MeAD kernel 
estimations were computed by Gaussian kernel function with 
20000000 repetitions in each estimation.

Figure 1 represents the results between classical and new 
proposed methods at h (5, 15, and 30) for real data. On the 

Table 1: AML Type of leukemia cancer from 2015 to 2020

CD45 PLT CD45 PLT CD45 PLT CD45 PLT CD45 PLT

70 17 80 54 62 13 80 89 74 61

70 51 88 31 60 15 90 6 77 16

80 7 58 16 32 62 88 137 80 155

94 79 54 40 42 71 60 2 55 24

40 44 70 95 54 19 35 58.9 70 31

85 68 74 46 86 5 43 33 80 229

Table 2: MSE values between classical methods and proposed methods of NWK estimators in real data (n=30)

h Fixed NW Variable NW G ANW M ANW Me ANW R ANW IQR ANW SD ANW MAD ANW MeAD

5 1890.7 1751.1 1768.2 1781 1787.9 1609.8 1609.7 1574.3 1572.4

10 2071 2010.9 2017.1 2015.6 1964.9 1909.1 1827.6 1803.2 1802.8

15 2214.5 2176.2 2179.1 2179.2 2046.3 1983.4 1906 1889.1 1889

20 2297.3 2277.5 2278.5 2279.3 2111.5 2021.5 1945.7 1928.5 1927.2

25 2340.4 2331.2 2331.6 2332.1 2152.3 2029.6 1966.8 1947.9 1945.8

30 2365.4 2360.9 2361.1 2361.4 2174.6 2033.7 1978 1958 1955.5
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other hand, Figures 2 and 3 illustrate the simulation results 
for both classical and proposed methods in nonparametric 
regression functions with sample size of 75 and at h (0.5, 
07.75, 1, and 1.5), respectively.

Table 3 compares simulation results between all classical 
(traditional) methods and new proposed update of Adaptive 
NW kernel such as IQR, SD, MAD, and MeAD aimed at 

Figure 1: Left hand classical methods and right hand proposed methods at h=5, 15, and 30 for real data. (a) CD45 versus PLT at h=5, (b) CD45 
versus PLT at h=5,	 (c) CD45 versus PLT at h=15, (d) CD45 versus PLT at h=15 (e) CD45 versus PLT at h=30	 f- CD45 versus PLT at h=30

improving the prediction accuracy of ANWK estimator. 
According to MSE criteria, the new proposed methods 
outperform classical methods of using various sample sizes 
and initial bandwidth values.

While the new proposed IQR is better than other classical 
approaches, it is less effective than other proposed methods 
such as SD, MAD, and MeAD, respectively. On the other hand, 
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the proposed method using MeAD has less MSE than MAD, in 
turn MAD is less than SD, and SD is less than IQR in different 
bandwidth and sample size.

CONCLUSSION

1-	 The new proposed method estimator for Median Absolute 
Deviation (MeAD) was more reliable than any of the other 

classical methods for both simulation and actual data 
depending on MSE criteria because it is able to reduce the 
effect of outliers on the fitting Kernel model.

2-	 New proposed method estimator for MAD was more 
reliable than any of the other classical methods for both 
simulation and specific data because the absolute mean 
difference in MAD gives lower value of MSE.

Figure 2: Left hand classical methods and right hand new proposed 
methods at h=0.5 and 0.75 with ample size 75, (a)-X versus Y at 
h=0.5 and n = 7, (	 b)-X versus Y at h=0.5 and n = 75, (c)-X versus Y 
at h=0.75 and n = 75, (d)-X versus Y at h=0.75 and n = 75

Figure 3: Left hand classical methods and right hand new proposed 
methods at h=1 and 1.5 with sample size 75, (a)-X versus Y at h=1 
and n = 75 (b)-X versus Y at h=1 and n = 75, (c)-X versus Y at h=1.5 
and n = 75 (d)-X versus Y at h=1.5 and n = 75

Table 3: MSE values between classical methods and new proposed methods of NWK estimators in simulation data

h n Fixed NW Variable NW G ANW M ANW Me ANW R ANW IQR ANW SD ANW MAD ANW MeAD

0.5 25 1.1997 1.2769 1.3439 1.3116 1.7164 1.0449 1.0124 0.9336 0.9317

50 1.5189 1.5314 1.6769 1.4909 2.2494 1.5075 1.5106 1.4193 1.3552

75 1.3763 1.5314 1.6357 1.4530 2.1951 1.3629 1.4166 1.3108 1.2386

150 1.3899 1.5314 1.6141 1.3753 2.3476 1.1274 1.3872 1.2582 1.1485

0.75 25 1.7391 1.5314 1.8532 1.8887 2.1838 1.2308 1.5290 1.3999 1.3796

50 1.9968 1.5314 2.1020 1.9050 2.5395 1.9694 1.7755 1.6786 1.6309

75 1.9562 1.5314 2.1081 1.9022 2.5044 1.8816 1.6998 1.5897 1.5259

150 1.9938 1.5314 2.1887 1.8970 2.7280 1.6904 1.6997 1.5504 1.4423

1 25 2.1124 1.5314 2.1651 2.1877 2.3063 1.6398 1.6593 1.5147 1.5114

50 2.4127 1.5314 2.4600 2.3296 2.7635 2.2906 1.9823 1.8860 1.8617

75 2.4083 1.5314 2.4799 2.3478 2.7244 2.2515 1.9349 1.8337 1.7994

150 2.5004 1.5314 2.6277 2.4347 2.9452 2.1524 1.9254 1.7770 1.7158

1.5 25 2.4158 1.5314 2.4393 2.4446 2.4028 2.0489 1.8624 1.7373 1.7350

50 3.0111 1.5314 3.0178 2.9693 3.0401 2.5985 2.2131 2.1163 2.1072

75 2.9941 1.5314 3.0051 2.9563 2.9868 2.5805 2.1996 2.1043 2.0916

150 3.1563 1.5314 3.2067 3.1444 3.1738 2.5569 2.1742 2.0404 2.0173

dc
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dc
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3-	 New proposed method estimator for SD was more reliable 
than any of the other classical methods for both simulation 
and current data using MSE criteria.

4-	 New proposed method estimator for IQR was more 
reliable than any of the other classical methods for both 
simulation and real data based on MSE criteria.

5-	 Median Absolute Deviation (MeAD) has less MSE than 
MAD, in turn MAD is less than SD, and SD is less than 
IQR in different bandwidth and sample size in either 
simulation or real data.

6-	 In both simulation and real data, both proposed and 
classical methods are improved by reducing the initial 
bandwidth values and sample size.
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