Antibiotic Susceptibility Pattern, Molecular Characterization of Virulence Genes among Pseudomonas Aeruginosa Isolated from Burn Patients

Keywords: Pseudomonas aeruginosa, burn patients, antibiotic resistance, virulence genes, multiplex PCR

Abstract

Abstract

In this research a total of 150 samples were obtained from burn and wound patients admitted to the West Erbil Emergence Hospital during period from September 2020 to January 2021. Through cultural, morphological features, biochemical testing and Vitek’s 2 compact systems, 40 isolates of P. aeruginosa have been identified. P. aeruginosa produced various pigments, including blue / green, and yellow / green. The iso1ates of P. aeruginosa were subjected to 14 different antibiotics. Impenim was the most effective antimicrobial agents against all P. aerugionsa isolates, and most of isolates showed high resistance degree to Ampicillin 100%, Chloramphenicol 100%, amoxicillin-clavulanic acid 100%, Cefotaxime 100% and Penicillin 100% while for Aztreonam 32.5%, Meropenem 42.5%, Tobramycin 45%, Gentamycin 45%, Amikacin 45%, Ciprofloxacillin 62.5%, ceftazidime 67.5, % Tetracycline 80%. All Psudomonas aeruginosa isolates were screened using Multiplex polymerase chain reaction (PCR) to check for the presence of (Pvda, LasB, Protease, exoA, exoT, exoU and plch) on its genomic DNA. The findings have shown that (Pvda was 55%, LasB 75%, Protease 65%, exoA 60%, exoT 75%, exoU 60% and, plch 55%) of isolates harbored these genes as a virulence genes.

Downloads

Download data is not yet available.

References

S. Santajit and N. J. B. Indrawattana. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, vol. 2016, p. 2475067, 2016.

K. Singh, M. Panghal, S. Kadyan and U. Chaudhary, J. P. J. Yadav. Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. Journal of Nanomedicine and Nanotechnology, vol. 5, no. 2, p. 1, 2014.

G. Héry-Arnaud, E. Nowak, J. Caillon, V. David, A. Dirou, K. Revert, M. R. Munck, I. Frachon, A. Haloun, D. Horeau-Langlard, J. Le Bihan, I. Danner-Boucher, S. Ramel, M. P. Pelletier, S. Rosec, S. Gouriou, E. Poulhazan, C. Payan, C. Férec, G. Rault, G. Le Gal and R. Le Berre. Evaluation of quantitative PCR for early diagnosis of Pseudomonas aeruginosa infection in cystic fibrosis: A prospective cohort study. Clinical Microbiology and Infection, vol. 23, no. 3, pp. 203-207, 2017.

S. Alkaabi. Bacterial isolates and their antibiograms of burn wound infections in burns specialist hospital in Baghdad. Baghdad Science Journal, vol. 10, no. 2, pp. 331-340, 2013.

M. E. Altaai, I. H. Aziz and A. A. Marhoon. Identification Pseudomonas aeruginosa by 16s rRNA gene for differentiation from other Pseudomonas species that isolated from patients and environment. Baghdad Science Journal, vol. 11, no. 2, pp. 1028-1034, 2014.

M. D. Y. Ali and Z. F. A. Abdulrahman. Molecular identification, susceptibility pattern, and detection of some virulence genes in Pseudomonas aeruginosa isolated from burn patients. Plant Archives, vol. 20, no. 1, pp. 2573-2580, 2020.

M. Hallin, A. Deplano, S. Roisin, V. Boyart, R. De Ryck, C. Nonhoff, B. Byl, Y. Glupczynski and O. Denis. Pseudo-outbreak of extremely drug-resistant Pseudomonas aeruginosa urinary tract infections due to contamination of an automated urine analyzer. Journal of Clinical Microbiology, vol. 50, no. 3, pp. 580-582, 2012.

R. J. Fair and Y. Tor. Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, vol. 6, p. PMC. S14459, 2014.

H. A. Mohammed, H. S. Yossef and F. I. Mohammad. The cytotoxicity effect of pyocyanin on human hepatocellular carcinoma cell line (HepG2). Iraqi Journal of Science, vol. 55, no. 2B, pp. 668-674, 2014.

N. Cevahir, M. Demir, I. Kaleli, M. Gurbuz and S. Tikvesli. Evaluation of biofilm production, gelatinase activity, and mannose-resistant hemagglutination in Acinetobacter baumannii strains. Journal of Microbiology, Immunology and Infection, vol. 41, no. 6, pp. 513-518, 2008.

F. G. Tafesse, C. P. Guimaraes, T. Maruyama, J. E. Carette, S. Lory, T. R. Brummelkamp and H. L. Ploegh. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin a, localizes to the Golgi and is cleaved by furin. Journal of Biological Chemistry, vol. 289, no. 35, pp. 24005-24018, 2014.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory Standards Institute, 2011.

H. Loveday, J. Wilson, K. Kerr, R. Pitchers, J. T. Walker and J. Browne. Association between healthcare water systems and Pseudomonas aeruginosa infections: A rapid systematic review. Journal of Hospital Infection, vol. 86, no. 1, pp. 7-15, 2014.

A. Simonetti, E. Ottaiano, M. Diana, C. Onza and M. Triassi. Epidemiology of hospital-acquired infections in an adult intensive care unit: Results of a prospective cohort study. Annali di Igiene, vol. 25, no. 4, pp. 281-289, 2013.

H. Judelson. Gel Electrophoresis. Protocol: Agarose Gel Electrophoresis Using Bio-Rad, 2001.

A. Olayinka, B. Olayinka and B. A. Onile. Antibiotic susceptibility and plasmid pattern of Pseudomonas aeruginosa from the surgical unit of a university teaching hospital in North Central Nigeria. International Journal of Medicine and Medical Sciences, vol. 1, no. 3, pp. 79-83, 2009.

M. L. Joly-Guillou, M. Kempf, J. D. Cavallo, M. Chomarat, L. Dubreuil, J. Maugein, C. M. Serieys and M. Roussel-Delvallez. Comparative in vitro activity of Meropenem, Imipenem and Piperacillin/tazobactam against 1071 clinical isolates using 2 different methods: A French multicentre study. BMC Infectious Diseases, vol. 10, no. 1, pp. 1-9, 2010.

M. Ebrahimpour, I. Nikokar, Y. Ghasemi, H. S. Ebrahim-Saraie, A. Araghian, M. Farahbakhsh and F. Ghassabi. Antibiotic resistance and frequency of Class 1 integrons among Pseudomonas aeruginosa isolates obtained from wastewaters of a burn center in Northern Iran. Annali di Igiene, vol. 30, no. 2, pp. 112-119, 2018.

A. Fattma, M. Ali, Z. A. S. Asaad and M. Shkofa. Isolation and identification of multi drug resistant Pseudomonas aeruginosa causing wound infection in Erbil City. International Journal of Research Studies in Science, Engineering and Technology, no. 4, 2017, pp. 30-36.

J. G. Collee, T. J. Mackie and J. E. McCartney. Mackie and McCartney Practical Medical Microbiology. United States: Harcourt Health Sciences, 1996.

I. Aibinu, T. Nwanneka and T. Odugbemi. Occurrence of ESBL and MBL in clinical isolates of Pseudomonas aeruginosa from Lagos, Nigeria. Journal of American Science, vol. 3, no. 4, pp. 81-85, 2007.

P. A. Lambert. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the Royal Society of Medicine, vol. 95, no. Suppl 41, p. 22, 2002.

S. Verheij, J. Harteveld and T. Sijen. A protocol for direct and rapid multiplex PCR amplification on forensically relevant samples. Forensic Science International: Genetics, vol. 6, no. 2, pp. 167-175, 2012.

C. S. Carlson, R. O. Emerson, A. M. Sherwood, C. Desmarais, M. W. Chung, J. M. Parsons, M. S. Steen, M. A. LaMadridHerrmannsfeldt, D. W. Williamson, R. J. Livingston, D. Wu, B. L. Wood, M. J. Rieder and H. Robins. Using synthetic templates to design an unbiased multiplex PCR assay. Nature Communications, vol. 4, no. 1, pp. 1-9, 2013.

Y. Achermann, M. Vogt, M. Leunig, J. Wust and A. Trampuz. Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. Journal of Clinical Microbiology, vol. 48, no. 4, pp. 1208-1214, 2010.

B. Richards, J. Skoletsky, A. P. Shuber, R. Balfour, R. C. Stern, H. L. Dorkin, R. B. Parad, D. Witt and K. W. Klinger. Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs. Human Molecular Genetics, vol. 2, no. 2, pp. 159-163, 1993.

H. J. Monstein, Å. Östholm-Balkhed, M. Nilsson, M. Nilsson, K. Dornbusch and L. J. A. Nilsson. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS, vol. 115, no. 12, pp. 1400-1408, 2007.

P. Qin, W. Qu, J. Xu, D. Qiao, L. Yao, F. Xue and W. Chen. A sensitive multiplex PCR protocol for simultaneous detection of chicken, duck, and pork in beef samples. Journal of Food Science and Technology, vol. 56, no. 3, pp. 1266-1274, 2019.

L. Poirel, T. R. Walsh, V. Cuvillier and P. Nordmann. Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, vol. 70, no. 1, pp. 119-123, 2011.

W. J. Mason, J. S. Blevins, K. Beenken, N. Wibowo, N. Ojha and M. S. Smeltzer. Multiplex PCR protocol for the diagnosis of staphylococcal infection. Journal of Clinical Microbiology, vol. 39, no. 9, pp. 3332-3338, 2001.

M. Khattab, M. Nour and N. M. ElSheshtawy. Genetic identification of Pseudomonas aeruginosa virulence genes among different isolates. Journal of Microbial and Biochemical Technology, vol. 7, no. 5, pp. 274-277, 2015.

K. Streeter and M. Katouli. Pseudomonas aeruginosa: A review of their pathogenesis and prevalence in clinical settings and the environment. IEM, vol. 2, no. 1, pp. 25-32, 2016.

A. M. Holban, M. Chifiriuc, A. I. Cotar and C. Bleotu. Virulence markers in Pseudomonas aeruginosa isolates from hospital acquired infections occurred in patients with underlying cardiovascular disease. vol. 18, no. 6, pp. 8843-8854, 2013.

I. Mitov, T. Strateva and B. Markova. Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. The Brazilian Journal of Microbiology, vol. 41, no. 3, pp. 588-595, 2010.

D. Jr. Hayes, S. E. West, M. J. Rock, Z. Li, M. L. Splaingard and P. Farrell. Pseudomonas aeruginosa in children with cystic fibrosis diagnosed through newborn screening: Assessment of clinic exposures and microbial genotypes. Pediatric Pulmonology, vol. 45, no. 7, pp. 708-716, 2010.

M. Ledizet, T. S. Murray, S. Puttagunta, M. D. Slade, V. J. Quagliarello and B. Kazmierczak. The ability of virulence factor expression by Pseudomonas aeruginosa to predict clinical disease in hospitalized patients. PLoS One, vol. 7, no. 11, p. e49578, 2012.

Published
2021-06-30
How to Cite
1.
Younus M, Bahjat O, Rashid S. Antibiotic Susceptibility Pattern, Molecular Characterization of Virulence Genes among Pseudomonas Aeruginosa Isolated from Burn Patients. cuesj [Internet]. 30Jun.2021 [cited 20Oct.2021];5(1):36-1. Available from: https://journals.cihanuniversity.edu.iq/index.php/cuesj/article/view/373
Section
Research Article

Most read articles by the same author(s)